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Abstract

Recent video diffusion models can synthesize visu-
ally compelling clips, yet often violate basic physi-
cal laws—objects float, accelerations drift, and colli-
sions behave inconsistently—revealing a persistent gap be-
tween visual realism and physical realism.  We pro-
pose NewtonRewards, the first physics-grounded post-
training framework for video generation based on verifi-
able rewards. [Instead of relying on human or VLM feed-
back, NewtonRewards extracts measurable proxies from
generated videos using frozen utility models: optical flow
serves as a proxy for velocity, while high-level appearance
features serve as a proxy for mass. These proxies enable ex-
plicit enforcement of Newtonian structure through two com-
plementary rewards: a Newtonian kinematic constraint en-
forcing constant-acceleration dynamics, and a mass con-
servation reward preventing trivial, degenerate solutions.
We evaluate NewtonRewards on five Newtonian Mo-
tion Primitives (free fall, horizontal/parabolic throw, and
ramp sliding down/up) using our newly constructed large-
scale benchmark, Newt onBench-60K. Across all primi-
tives in visual and physics metrics, Newt onRewards con-
sistently improves physical plausibility, motion smoothness,
and temporal coherence over prior post-training meth-
ods. It further maintains strong performance under out-of-
distribution shifts in height, speed, and friction. Our results
show that physics-grounded verifiable rewards offer a scal-
able path toward physics-aware video generation.

1. Introduction

Gravity is everywhere. From the fall of an apple to the mo-
tion of celestial bodies, physical laws govern how objects
move, interact, and persist through time. Yet, in the rapidly
advancing field of video generation, such fundamental prin-
ciples are largely absent [3, 30, 31, 38, 43, 71]. Recent gen-
erative models can produce visually stunning videos from
text [15, 21, 52, 66, 77], images [7, 15, 21, 52], or latent tra-

NewtonRewards

Parabolic throw

Figure 1. NewtonRewards enforce physical laws in video
generation. Shown is a parabolic throw scenario from our
NewtonBench-60K dataset. Baseline supervised fine-tuning (SFT)
produces implausible motion violating Newtonian dynamics. Our
NewtonRewards post-training restores parabolic trajectories
that follow constant-acceleration behavior predicted by physics.

jectories [12], but often exist in worlds unbound by physics:
worlds where objects float [69], collisions resolve unrealis-
tically [3], and motion unfolds without cause [71]. These
violations of basic laws, such as Newton’s laws of motion,
highlight a lack of physical realism in video generation.

Embedding physical plausibility into video generation is
more than an aesthetic choice; it is a necessity. In many ap-
plications, from immersive game environments and realistic
cinematic worlds [55], to training world models for games
[10, 29, 67], autonomous driving [1, 14, 27, 48] and robotic
control [4, 35, 64], generated videos serve as data for per-
ception, reasoning, and action [60]. In these scenarios, non-
physical dynamics can lead to inconsistent learning signals,
unrealistic affordances, and failure to generalize to the real
world. A model that understands that “objects fall down”
or that “collisions change velocity” produces not just more
believable motion, but also a better world model.

Recently, several approaches have sought to embed
physical plausibility into video generation. These range
from methods that fine-tune diffusion models using tex-
tual or feedback-based supervision from large language or
vision-language models [16, 22, 33, 42, 54, 62, 65, 73, 74],
to approaches that incorporate physical simulators or 3D
representations as motion or geometry priors [26, 36, 39,
40, 53, 61, 70, 76], and to those that rely on physics-rich
datasets or post-training signals derived from real or syn-
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thetic videos [11, 28, 36, 54]. Still, these methods typically

use physics signals coming from humans or VLM feedback

as a condition rather than explicitly enforcing physics laws.

Neither humans nor “VLMs-as-judge” can precisely
evaluate how well physical constraints are being followed
(apart from egregious physical law violations). As a result,
generated videos often appear visually realistic yet fail to
satisfy physics principles such as momentum conservation,
force—acceleration proportionality, and consistent gravita-
tional effects. We argue that despite improved perceptual
realism and motion smoothness in recent work, physically
plausible video generation remains a challenge, as models
must respect the physical laws governing object dynamics.

Therefore, in this work, we propose the first verifi-
able rewards for physical laws in video generation, which
employ rule-based evaluations that can automatically ver-
ify the correctness of the output [19, 32, 44, 49, 57, 58].
Given a video generator, physical quantities such as veloc-
ity or force cannot be directly observed from its raw output
frames. To bridge this gap, we estimate these quantities
using pre-trained utility models (e.g., optical flow or video-
embedding networks). Their outputs, which we term mea-
surable proxies, serve as observable surrogates for underly-
ing physical variables. By defining physics constraints and
rewards on these proxies, we post-train video generators to
produce videos that follow physical laws explicitly.

As an initial application of this approach, we present
NewtonRewards, as a basis for a framework for New-
tonian motion constraints. We define measurable prox-
ies (optical flow and appearance embeddings) for physical
constraints (velocity and mass) and use them to formulate
both kinematic and mass-conservation rewards. We evalu-
ate our framework across five Newtonian Motion Primitives
(NMPs): (i-iii) free fall, horizontal and parabolic throw,
and (iv-v) ramp sliding down/up. We experiment on our
large-scale simulated dataset, NewtonBench-60K, specifi-
cally designed for dynamic motion evaluation, with diverse
scenarios for each NMP. Empirically, Newt onRewards
consistently improves physical plausibility, motion smooth-
ness, and temporal coherence over prior methods such as
PISA [36]. It yields gains across all five NMPs for both
in-distribution (ID) and out-of-distribution (OOD) settings.
Physics-grounded constraints correct kinematic violations
that visual feature alignment alone cannot fix, i.e., reducing
constant-acceleration residuals and mitigating reward hack-
ing behaviors (objects vanish to minimize motion).

Our contributions can be summarized as:

* We introduce NewtonRewards, an elegant physics-
grounded post-training framework for video generation
that explicitly enforces Newtonian dynamic motions (e.g.,
throw, free fall, slide with friction).

* We employ optical flow and visual features as a differ-
entiable proxy to devise Newtonian kinematic and mass

constraints, yielding verifiable, rule-based rewards that
promote physically correct motion.

* We simulate a controlled, large-scale dataset and bench-
mark specifically designed to evaluate dynamic mo-
tion realism and physical consistency in video gener-
ation. We will release our simulation/training code,
NewtonBench-60K, and models to the community.

* Experiments show NewtonRewards consistently im-
proves across both visual and physics metrics, across all
five NMPs, for both ID and OOD settings, producing
more physically faithful and temporally coherent videos.

We posit that our methodology is general. Given a mea-
surable proxy of a variable in a physical law, the same steps
can be followed to come up with verifiable rewards appro-
priate for that law. We hope that this general framework
can pave the way for future research in this area.

2. Related Works

Video Generative Models. Video models are progress-
ing rapidly [5, 7-9, 17, 23, 24, 50, 56, 68]. Using large-
scale datasets and scalable backbones (e.g., DiT-style archi-
tectures [45]), modern models produce photorealistic short
clips conditioned on text, images, and other control signals
[6, 20, 34, 41, 46, 55, 72, 75]. Open-source efforts, such
as OpenSora [77], CogVideo [25, 66], HunyuanVideo [31],
and Wan 2.1 [52], have shown big improvements in vi-
sual fidelity and conditional control. Although these mod-
els show some emergent reasoning on tasks beyond their
training [59], scaling data or model size alone often cannot
eliminate unrealistic motion or physics violations [30, 43].
Physics-aware Video Generation. There are 3 groups of
strategies for physics priors/dynamics in video generation.

(1) Instruction and feedback-based fine-tuning. Sev-
eral methods fine-tune video diffusion models using feed-
back or textual instructions from Large Language Models
(LLMs) [22, 37, 73] or Vision-Language Models (VLMs)
[16, 42, 65, 74]. For instance, PhyT2V [62] introduces a
feedback loop where an LLM checks if generated videos
obey physical laws, reasoning over captions from a video
captioning model. However, such feedback is indirect and
often reflects perception rather than physics consistency.

(2) Physics-guided simulation and representation. An-
other line of work leverages physics simulators or 3D repre-
sentations to guide video generation. Some approaches pre-
compute 3D or physically plausible conditions as auxiliary
input for the video generator [53, 61, 70]. Others build inte-
grated pipelines combining simulation, rendering, and gen-
erative modeling to ensure motion realism [26, 39, 40, 62].
For instance, PhysGen [39] performs image-based warp-
ing with simulated motion dynamics given user-defined
forces and torques. However, relying on external simulators
enforces physics only indirectly, through the pre-trained
model’s interpretation of conditioned data.
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Figure 2. Illustration of the five NMPs in the proposed
NewtonBench-60K dataset. Left: corresponding free-body di-
agrams showing dominant forces and accelerations. Right: ren-
dered trajectories from our Kubric-based [18] simulator, demon-
strating constant-acceleration dynamics in diverse environments.

(3) Physics-rich datasets and post-training. This strat-
egy focuses on data-level physical grounding. PISA [36]
introduced a dataset of 361 real-world and 60 synthetic
videos of objects falling in diverse environments and used
post-training strategies such as supervised fine-tuning and
object-reward optimization, aligning optical flow, depth,
and segmentation maps to improve physical consistency.
Methods such as [11, 54, 76] rely on physics-rich or
instruction-grounded datasets to enhance physical plausibil-
ity in a data-driven manner. Similarly, PhysMaster [28] pro-
posed optimizing a neural PhysEncoder via reinforcement
learning, using costly human-annotated preference data.

3. Newtonian Motion Primitives (NMPs)

We formulate post-training of video diffusion models
through classical mechanics, grounded in Newton’s three
laws of motion (Section 3.1). In our setting, an object ob-
served in a video sequence undergoes motion determined by
external forces acting upon it. Building upon these physical
laws, we identify five canonical Newtonian Motion Primi-
tives (NMPs): free fall, horizontal throw, parabolic throw,
ramp sliding down, and ramp sliding up. Each primitive
corresponds to a distinct combination of forces and pro-
duces a characteristic pattern of constant acceleration in the
image plane, as described in detail in Section 3.2.

3.1. Background: Newton’s Laws of Motion

Let F,; denote the net resultant force acting on the object,
v = (vg,Vvy) its velocity projected onto the image plane,
and a = v its corresponding acceleration.

Newton’s First Law (Law of Inertia) states that an object
remains at rest or continues in uniform motion unless acted
upon by an external force. It underlies scenarios such as
free fall, horizontal throw, and parabolic throw, where the
absence of horizontal forces yields a, = 0 and constant v .
Newton’s Second Law (Law of Acceleration) relates the
net force F, to the resulting acceleration a and mass m:

a=Fyp/m . (1

It provides the quantitative foundation for our kinematic re-
wards, linking motion to underlying forces and mass.
Newton’s Third Law (Action-Reaction) states that when
two bodies interact, they exert equal and opposite forces on
each other. In our context, when an object interacts with
a ramp or surface, the ramp exerts an equal and opposite
normal force that balances the contact, together with a tan-
gential frictional force opposing motion.

3.2. Forces and Accelerations of NMPs

Let the world coordinate system be (X, Y, Z), with gravity
acting as g = (0, —g, 0), and let (x, y) denote the projection
in the image plane. Under a pinhole camera model with fo-
cal length f and scene depth Z, the image-plane coordinates
scale with depth, giving the approximation z = (f/Z)X
with proportional factor f/Z. For short intervals, this scale
is nearly constant, allowing analysis in image-space. *
(1-3) NMP-F/TH/TP: Free Fall, Horizontal and
Parabolic Throw. Object motion under uniform gravity g
and no other external forces follows Newton’s Second Law:
a, =0 3 ay =—-g9 , ()
corresponding to constant downward acceleration. Differ-
ent initial conditions yield special cases: zero initial veloc-
ity for free fall (NMP-F), nonzero horizontal velocity for
horizontal throw (NMP-TH), and arbitrary initial velocity
(Voe, Voy) for parabolic throw (NMP-TP).
(4-5) NMP-RD and NMP-RU: Ramp Sliding with Fric-
tion. For a ramp inclined by angle 6 relative to the horizon-
tal, § = (t,,t,) is the unit tangent vector along the ramp’s
downhill direction in the image plane, and n the in-plane
normal. Decomposing the gravitational force with kinetic
friction Fy = —p,mg cos 68, the net tangential force is

F, =+ (mgsinf — ppymgcosb) 3)

“We assume that the image’s vertical axis is aligned with the direction
of gravity. For tilted cameras, projecting g onto the image plane yields
constant apparent acceleration under mild assumptions: namely, weak per-
spective (small depth variation) and a static camera.
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Figure 3. Physics-Grounded Video Post-Training Pipeline. Our method improves a pre-trained video generator by using physics-based
rewards. Utility models (optical flow W and V-JEPA 2) process the generated video to compute measurable proxies, from which kinematic
and mass conservation rewards are derived to enforce explicit physics constraints.

where the positive/negative sign corresponds to sliding
down/up. The constant tangential acceleration is

a; = +g(sinf — py cosh) 4)

and its projection onto the image plane is a = (ast,, ast,).

4. Method: NewtonRewards

NewtonRewards post-trains video generators to follow
physical laws. The main challenge lies in constructing re-
ward losses that enforce physical constraints. Given that the
physics quantities are not directly measurable from gener-
ated videos, our core idea is to leverage measurable proxies
extracted from generated videos to construct these rewards.

NewtonRewards has two components (Figure 3): (i)
computing measurable proxies from model outputs (Sec-
tion 4.1), and (ii) defining reward functions that quantify ad-
herence to physics constraints; Section 4.2 details how these
proxies are used to construct reward functions that enforce
physical constraints. These reward signals are then used to
fine-tune video generators, so that generated sequences not
only appear realistic but also follow physical laws.

4.1. Measurable Proxies

Let Gy(¢, ¢) denote a video generator parameterized by 0,
producing a video V' = Gjy(e,¢) given initial latent noise
€ and condition c. We define a measurable-proxy extrac-
tor M which maps the generated video V' to a set of dif-
ferentiable, physically meaningful quantities M (V) (e.g.,
per-pixel displacement fields, object velocities, or visual
features) that can serve as measurable proxies for physics
quantities. In this work, we extract optical flow fields as
proxies for velocity (Section 4.1.1) and visual appearance
embeddings as proxies for mass-related properties (Sec-
tion 4.2.1). These proxies allow us to formulate physics-
grounded constraints, such as constant-acceleration residu-
als and mass-conservation consistency, that provide verifi-
able reward signals for fine-tuning the generator.

4.1.1. Optical Flow as Velocity Proxy

In real-world videos we cannot directly observe v,. We in-
stead employ an optical flow model Mpr = W to estimate
the per-frame displacement field using video frames V;:

(r/)t = lI’(W7‘/t+1) ) (5)

where ¢, = (¢, ¢7) denotes predicted optical flow (in pix-
els/frame). The image-plane velocity is approximated as:

Vi ~ d)t/At bl (6)
with frame interval At = 1/FPS.

4.1.2. Visual Features as Mass Proxy

Newton’s Second Law states that acceleration is inversely
proportional to mass under fixed external force (Eq. 1), im-
plying that heavier objects exhibit smoother, slower changes
in motion. Though absolute mass is not directly observ-
able in videos, appearance and texture cues often corre-
late with object identity, material, and thus effective mass.
We define a mass proxy based on high-level visual repre-
sentations extracted from a pre-trained video encoder. Let
z; = Mpmass(V2) denote the per-frame feature embedding
obtained from the encoder, capturing consistent object-level
appearance information over time. This embedding space
provides a differentiable, semantically aligned measure of
visual mass consistency that can be compared across time
or between simulated and generated videos.

4.2. Physics Constraints and Rewards

Let {C;(m;)}7_, denote a set of physical constraints or
laws that should be satisfied by these extracted proxy quan-
tities m ;. We construct a physics penalty:

J
Longs = Y N - UG IML(V)]) )

where £(-) is a penalty or norm (e.g., squared error or hinge
loss) and A; are weighting coefficients.



4.2.1. Discrete Constant-Acceleration Constraint

For all primitives above, the image-plane accelerations
(az,a,) remain constant throughout the motion. Discretiz-
ing the kinematic relation vy;; = v; + aAt and v; =
vi_1 + a At yields

Vig1 —2vi+ v 1 =0 . (3

This discrete second-derivative constraint enforces the con-

stant acceleration implied by Newton’s Second Law.
Substituting the proxy in Equation 6 into Equation 8, we

obtain the unified residual for all NMPs (see Section 3.2):

b1 —2¢,+ P ~0 . 9)

Proposition 1 (Newtonian Kinematic Constraint). For an
object governed by time-invariant external forces, the dis-
crete second-order derivative of its optical-flow field pre-
dicted by ¥ vanishes:

Reinematic = || #1471 — 26 + d_1[a =0 . (10)

This is the optical-flow realization of Newton’s Second Law
in the video domain, enforcing constant acceleration across
all five Newtonian Motion Primitives.

Equation (10) thus defines our constant-acceleration
residual Riinematic, capturing the essence of Newtonian dy-
namics in a differentiable, video-aligned form.

4.2.2. Mass Conservation via Visual Features

Given reference embeddings z{™ from physically sim-
ulated videos and z{™" from generated videos, feature-
level similarity constraint encourages mass preservation, so
that the generator maintains consistent object appearance—
hence consistent inferred mass—throughout the sequence
and across domains. The mass conservation residual

R — - 3 [ — g ()
mass — T — t t 2 y

penalizes deviations between generated and simulated vi-
sual features. Minimizing Rp,s encourages the genera-
tor to produce motions and appearances that obey mass-
dependent dynamics implied by Newton’s laws, comple-
menting the kinematic constraint in Equation 10.

4.2.3. Post-Training Objective

Our final objective combines a Newtonian kinematic con-
straint (Prop. 1) and a mass-matching term (Eq. 11):

‘cphys = >\kinematic Rkinematic + )\mass 7zmass . (12)

As the background is static and the camera is fixed in the
construction of our dataset, the optical flow field ¢ directly
captures object motion, letting us compute the loss over the

entire frame. This objective enforces Newtonian consis-
tency without requiring explicit acceleration/depth supervi-
sion, unifying all five motion primitives (Section 3.2) under
a single principle: under constant external forces, image-
plane accelerations remain constant.

5. NewtonBench-60K

We introduce NewtonBench-60K, a controlled, large-scale
dataset and benchmark designed to isolate and evaluate five
Newtonian Motion Primitives (NMPs): free fall, horizontal
throw, parabolic throw, sliding down a ramp with friction,
and sliding up a ramp with an uphill initial velocity, each
visualized in Figure 2. The corpus comprises SOK simu-
lated training videos (10K per NMP) and a 10K held-out
benchmark with 2K videos per NMP, evenly split into In-
Distribution (ID) and Out-Of-Distribution (OOD) subsets.
In comparison, PISA [36] focuses solely on free-fall and
does not capture a broader range of Newtonian dynamics.

5.1. Simulation Pipeline and Canonical Setups

Physics, Rendering, and Outputs. We build upon Kubric
for scene orchestration, PyBullet for rigid-body dynamics,
and Blender for rendering. Gravity is g = (0,0, —9.81);
videos are rendered at 512x512 resolution, 32 frames at 16
fps with HDRI lighting. We adopt a fixed side-view camera
for unambiguous 2D motion analysis; per-clip outputs in-
clude RGB frames, instance masks, depth maps, and meta-
data (camera intrinsics/extrinsics and object attributes).
Assets and Splits. Objects are sampled from the GSO
dataset [13] and backgrounds from HDRI [18]. We create
disjoint train/test pools for both objects and backgrounds,
sampling strictly within the selected split.

Table 1. Natural motion primitive parameterization.

NMP Description

Free fall
Horizontal throw

Spawn heights ~[0.5, 1.5] m; zero initial velocity.
Horizontal speed vo€[2, 6] m/s; pitch 0°.

Speed vg € [2, 6] m/s; launch angle 6 € [15°, 75°].
Ramp angle 6 € [15°, 45°], kinetic friction coefficients
(#ramp, Hobj) =~ 0.06; objects positioned near crest and
released from rest.

Parabolic throw
Ramp slide down

Ramp slide up Same ramp construction; initial uphill vg € [3, 4] m/s

imparted along the tangent.

NMP Parameterization. We generate each primitive in
Table 1, by sampling a small set of physically meaningful
parameters; ramps are built from rectangular colliders (sta-
ble physics) and visually aligned slabs (rendering), with top
plane and downhill direction computed from the ramp mesh
for consistent tangential placement and motion direction.

Mask Extraction for Evaluation. For ground truth, we
use renderer instance masks to obtain per-frame object
regions. For generated videos, we extract object masks
with SAM2 [47] guided by conditioning frames and ob-



ject prompts; centroids c&" are then computed from these
masks for metrics evaluation (Sec. 5.3).

5.2. Benchmark Protocol: ID & OOD

For each NMP, we synthesize 1K ID and 1K OOD
videos. ID parameter ranges mirror training (e.g., fall
height [0.5,1.5]m; throw speed [2,6]m/s; ramp an-
gle [15°,45°]). OOD ranges deliberately hold out dis-
joint bands to stress generalization: higher horizontal
throws (e.g., [1.7,2.0] m/s), higher parabolic throws (e.g.,
[1.7,2.0] m/s), extreme parabolic angles (e.g., (75°,90°]),
and steeper/shallower ramps (e.g., (45°,60°] with faster
sliding up [4.0, 5.0] m/s). We optionally perturb friction by
+25% in OOD to decouple appearance from dynamics.

5.3. Evaluation Metrics

All metrics are computed per object (frame-aligned), then
averaged across objects and videos. For frame interval At,
cf" cf' € R? are generated and ground-truth centroids at
frame ¢. Evaluation includes physics-based metrics (ve-
locity and acceleration RMSE) and standard visual metrics
(L2, CD, and IoU) on both in and out-of distribution splits.
Velocity RMSE. We define image-plane velocities by the
first discrete derivative v, = <=t Our velocity error
measures Newtonian consistency of first-order kinematics:
RMSE, = /74 S0 v — v

Acceleration RMSE. Likewise, we define image-plane ac-
celerations by the discrete second-order derivative,

Vitl — Vi Ciyo — 2C441 + ¢y
N AL2 ’

we report RMSE, = \/ i S e - aflﬂz. These
two physics metrics directly evaluate if generated motions
obey constant-acceleration behavior in both axes.
Standard Visual Metrics (following PISA). Spatial fi-
delity metrics Trajectory Position Error (centroid L2)
L2 traj = & 321 |5 — c¥'|l2, Chamfer Distance (CD)
between binary masks (per frame), and Intersection over
Union (10U) (per-frame overlap), capture pixel-space align-
ment and shape agreement.

6. Experiments

6.1. Experimental Settings

We fine-tune our base text-to-video diffusion model Open-
Sora v1.2 [77] on our NewtonBench-60K dataset com-
prising 50K simulated videos across five NMPs, and fine-
tune it to accept both text and the first 4 frames of a video
as conditions. Both Supervised Fine-Tuning (SFT) and
post-training operate on 32-frame clips at 16 fps, consis-
tent with the dataset specification. Training is performed
on 8xNVIDIA H100 (80GB) GPUs with a batch size of

1 and gradient accumulation of 32. The learning rate is
set to 1 x 10~* for SFT and 1 x 10~° for post-training.
We employ the RAFT [51] optical-flow model to compute
motion fields and the V-JEPA 2 [2] encoder to extract vi-
sual features for mass alignment. Evaluation follows the
NewtonBench-60K protocol.

6.2. Experimental Results

Comparison with State of The Art. We compare
our NewtonRewards framework with three post-training
strategies adapted from PISA [36]: Optical Flow Reward,
Depth Reward, and Segmentation Reward. All methods are
fine-tuned from the same OpenSora (SFT) baseline under
identical settings on our Newt onBench-60K dataset. In
PISA, each reward measures the similarity between the gen-
erated video and its simulated ground truth: RAFT [51]
computes optical flow fields and minimizes their discrep-
ancy, Depth-Anything-V2 [63] aligns predicted and true
depth maps, and SAM?2 [47] provides object masks for IoU-
based supervision. Table 2 reports the results.

We observe that visual feature-based rewards improve
appearance metrics, i.e., Depth and Optical flow rewards
slightly enhance L2, CD, and IoU; our Mass reward im-
proves IoU. However, they do not guarantee physically con-
sistent motion—reflected in higher velocity and/or accelera-
tion errors (RMSE,, RMSE,).

Finding 1. Visual feature alignment improves percep-
tual and spatial fidelity but fails to enforce adherence
to physical laws of motion.

As shown in Table 2, PISA ORO-Depth shows small
spatial gains (+1-4%) but degrades temporal consistency
(—=3% in RMSE,, —4% in RMSE,). Post-training
only with our mass conservation reward shows a sim-
ilar trend (row NewtonRewards w/o residual). Seg-
mentation and optical flow rewards slightly worsen ve-
locity measures, suggesting that frame-level feature align-
ment alone cannot capture Newtonian dynamics. In con-
trast, Newt onRewards achieves consistent improvements
across all five metrics (average +9.75%), demonstrating
that enforcing self-consistent kinematic and mass con-
straints provides a stronger inductive bias for physically
grounded and temporally coherent video generation.
Evaluation Across Newtonian Motion Primitives. Fig. 4
shows the relative performance gain of each post-training
strategy over the OpenSora (SFT) baseline across all five
NMPs. PISA rewards show inconsistent and task-dependent
behavior: Depth is mildly better on free fall and horizontal
throw, but worse on motions such as parabolic and ramp
dynamics. Same with Segmentation—small gains on simple
trajectories but clear regression on ramp-down and marginal
improvement elsewhere. Optical Flow is highly unsta-
ble, with large swings across primitives, including strong



Table 2. Comparison of different post-training strategies on the OpenSora (SFT) baseline. Percentages indicate relative change vs. baseline
(green = improvement, red = regression). Visual metrics (L2, CD, IoU) capture pixel alignment and shape agreement; physics metrics

(RMSE,, RMSE,) capture physical plausibility in motion.

Visual metrics

Method L2 () CD ()

ToU (1)

Physics metrics

RMSE, () RMSE, (}) Avg. Change

OpenSora (SFT) 0.1098 0.3159

0.1103

0.2792 3.3244 -

PISA [36] ORO Optical Flow
PISA [36] ORO Depth Map
PISA [36] ORO Segmentation
NewtonRewards
NewtonRewards (w/o residual) 0.1109 (-1.00%)
NewtonRewards (w/o mass) 0.1055 (+3.92%)

0.1042 (+5.10%)
0.1079 (+1.73%)  0.3114 (+1.43%)
0.1099 (-0.09%) 03177 (-0.57%)
0.0962 (+12.39%) 0.2930 (+7.25%)
03199 (-1.27%)
0.2993 (+5.26%)

0.2963 (+6.18%)

0.1179 (+6.88%)

0.1165 (+5.62%)

02799 (-0.25%) 27217 (+18.12%) +7.61%

0.1146 (+3.90%)  0.2875(-2.97%) 3.4652 (-4.23%)  +0.37%
0.1138 (+3.17%)  0.2796 (-0.14%) 32943 (+0.91%)  +0.65%
0.1266 (+14.78%) 0.2628 (+5.87%) 3.0432 (+8.46%)  +9.75%
0.1145 (+3.81%)  0.2793 (-0.04%) 33321 (-0.23%)  +0.25%

02737 (+1.97%) 2.5348 (+23.75%) +8.10%

@ PiSA Depth [ PISA Segmentation [l PISA Optical Flow [ NewtonRewards
15.0
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Relative change across 5 metrics (%)

Free Fall Horizontal Parabolic Ramp Sliding Ramp Sliding

Throw Throw Down Up

Figure 4. Relative performance change across Newtonian Mo-
tion Primitives. Percentage improvements over the SFT baseline
across all five NMPs. Depth and Segmentation provide modest
gains on simple motions but degrade on ramp dynamics, while
Optical Flow shows highly variable and unstable behavior. In
contrast, Newt onRewards delivers consistent positive improve-
ments across all primitives, demonstrating robust generalization to
diverse Newtonian dynamics.

regression on ramp-down despite large gains on free fall
and parabolic throw. In contrast, NewtonRewards pro-
vides uniformly positive improvements across all five mo-
tion primitives. Its largest gains are on the most challenging
motions—up to +12.7% on parabolic throws and +11.7% on
ramp-up—and still outperforms all baselines on simple tra-
jectories. Enforcing Newtonian kinematics and mass con-
sistency yields robust, cross-regime improvements that gen-
eralize reliably across diverse physical scenarios.

Qualitative Comparison. Representative results across
different post-training strategies are in Fig. 5. While PISA-
based rewards grounded in visual similarity (Depth, Seg-
mentation, Optical Flow) sometimes improve local appear-
ance, they fail to enforce physically coherent motion: ob-
jects either drift unnaturally or exhibit inconsistent accel-
eration when interacting with the ramp. For example,
PISA Depth (Row 2) shows the cube briefly losing con-
tact in Frame 3, and PISA OF (Row 4) produces a sud-
den orientation snap between Frames 3-4. In contrast, our
NewtonRewards yields visually realistic and physically
consistent trajectories—objects maintain stable contact, de-
celerate smoothly under friction, and adhere to Newtonian
expectations. Visual observations and quantitative trends in
Table 2 and Fig. 6, confirm that physics-grounded verifiable

SFT

PISA
Depth

PISA
Seg

PISA
Optical
Flow

Newton
Rewards

Figure 5. Qualitative comparison of post-training strate-
gies on the NewtonBench—-60K ramp-slide down scenario.
Clear differences emerge when inspecting the temporal evolu-
tion across frames (left—right). For SFT and all PISA variants
(Depth, Seg, Optical Flow), the cube exhibits inconsistent de-
celeration and unstable surface contact-evident in Frames 24,
where the cube tilts unnaturally, slips erratically, or momentar-
ily “floats” above the ramp. PISA Optical Flow especially shows
noticeable jitter and non-smooth frame-to-frame motion. In con-
trast, Newt onRewards maintains stable grounding and smooth,
constant-acceleration motion across all frames.

rewards promote perceptual fidelity and dynamic realism.

OOD Evaluation. Table 3 evaluates generalization un-
der distribution shift, where test videos exhibit higher drop
heights, faster throws, steeper ramps, and perturbed fric-
tion compared to training. The OpenSora (SFT) baseline
degrades substantially in this setting (e.g., L2 increases
to 0.1297 and acceleration error nearly doubles to 6.15),
reflecting limited robustness to unseen physical configu-
rations. In contrast, NewtonRewards consistently im-
proves across all five metrics—achieving a +7.01% reduction
in L2, +7.38% improvement in CD, and 4+9.79% reduction



Table 3. Out-of-distribution (OOD) evaluation on SK OOD benchmark of NewtonBench-60K. NewtonRewards improves consis-
tently across all metrics, demonstrating stronger generalization than the OpenSora (SFT) baseline.

Method L2(}) cD () ToU (1) RMSEy (J) RMSE, () Avg. Change
OpenSora (SFT) — ID 0.1098 0.3159 0.1103 0.2792 3.3244 -
NewtonRewards—ID 0.0962 (+12.39%) 0.2930 (+7.25%) 0.1266 (+14.78%) 0.2628 (+5.87%) 3.0432 (+8.46%) +9.75%
OpenSora (SFT) — OOD 0.1297 0.4082 0.0998 0.4230 6.1451

NewtonRewards— OOD 0.1206 (+7.02%)

0.3780 (+7.40%) 0.1025 (+2.71%)

0.3816 (+9.79%) 5.1561 (+16.09%) +8.60%
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Figure 6. Mean horizontal and vertical residuals ¢, ,; — 2 ¢, +
¢,_,. Lower magnitude indicates closer adherence to constant-
acceleration dynamics. NewtonRewards produces the smallest
residuals, while SFT and PISA variants show larger deviations.

in acceleration error; these, despite never observing OOD
dynamics during post-training. These clearly show that en-
forcing Newtonian kinematic and mass constraints yields
models that not only fit training physics more faithfully but
also extrapolate more reliably to unseen physical regimes.

Constant-Acceleration Residual Analysis. To directly as-
sess whether generated motions obey Newtonian kinemat-
ics, we compute the mean discrete second-order residual
by 1 — 2¢; + ¢,_1, averaged over all 32 frames of the
sliding-down-ramp scenario for each method, as in Fig-
ure 5. This residual is zero for ideal constant-acceleration
motion and therefore serves as a sensitive diagnostic of dy-
namical consistency. Figure 6 shows the horizontal (top)
and vertical (bottom) residual fields. The SFT baseline and
all PISA variants produce strong red/blue activations, in-
dicating noticeable violations of the constant-acceleration
constraint. Even methods that use ground-truth visual sig-
nals (PISA Depth, Segmentation, and Optical Flow) re-
tain substantial structured residuals, revealing that pixel-
level alignment does not translate into correct governing dy-
namics. In contrast, Newt onRewards produces markedly
smoother residual maps with minimal magnitude, achieving
the lowest absolute residuals across both axes. These re-
ductions demonstrate that enforcing Newtonian kinematic
structure yields trajectories that more closely adhere to true
constant-acceleration behavior, beyond what can be cap-
tured through appearance- or flow-based supervision alone.

6.3. Ablation Study

Newtonian Kinematic Residual Constraint. Ablating the
discrete residual term largely removes the temporal regu-
larization effect, leading to only marginal overall improve-
ment over SFT (+0.25%). Without enforcing constant ac-
celeration, the model produces visually coherent but physi-

V' Mass Reward

X Mass Reward

Figure 7. Videos generated with the mass reward (left) maintain
consistent object persistence, while removing it (right) leads to
degenerate behavior where objects vanish; an instance of reward
hacking when optimizing only the kinematic residual.

cally inconsistent motion, i.e., slightly better spatial fidelity
(IoU +3.8%) yet degraded kinematic accuracy across L2,
CD, velocity, and acceleration metrics. This highlights that
the residual constraint is essential for stabilizing motion and
aligning generated dynamics with Newtonian laws.

Mass Conservation Reward. Although the overall gain
slightly decreases (+8.1%vs. +9.75%) when removing mass
conservation, as seen in Table 2, this configuration only em-
ploys the Newtonian kinematic residual without additional
regularization. To understand its influence, we assess the
role of mass conservation in stabilizing post-training.

Finding 2. The mass conservation reward mitigates re-
ward hacking that emerges when optimizing solely the
kinematic residual, thereby avoiding trivial solutions.

Without this constraint, the model converges to a degen-
erate, trivial solution that minimizes the residual by driving
all velocities to zero (v; = 0), effectively causing object
disappearance. By anchoring visual and feature-level mass
consistency, the mass reward prevents this collapse and en-
sures stable, physically meaningful motion as in Figure 7.

7. Conclusion

We introduced NewtonRewards, a general physics-
grounded post-training framework that enforces Newtonian
consistency in video generation by constructing verifiable
rewards from measurable proxies. By leveraging optical
flow and visual features as surrogates for velocity and mass,
NewtonRewards enforces Newtonian dynamics through
kinematic and mass-conservation constraints. Our method
enables video generators to obey constant-acceleration dy-
namics and maintain physical plausibility across diverse
NMPs. Beyond Newtonian mechanics, our approach is in-
herently general. This unlocks a broader view of physics-
grounded post-training: once a physical quantity can be es-
timated, generative models can be guided toward physically
valid behavior through explicit, differentiable constraints.
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What about gravity in video generation?
Post-Training Newton’s Laws with Verifiable Rewards

Supplementary Material

This supplementary document provides additional results
and analyses supporting the main paper. Section A
presents a real-world evaluation on 361 free-fall videos
from the PISA [36] benchmark, showing that our physics-
grounded post-training—developed entirely in simulation—
transfers to natural scenes and real gravitational motion.
Section B provides additional quantitative evidence for
Finding 2, demonstrating mass conservation reward pre-
vents reward hacking by avoiding degenerate zero-motion
solutions. Section C offers extended qualitative compar-
isons across the remaining NMPs, with frame-level visual-
izations highlighting the improved consistency and stability
of NewtonRewards. We also include video-based qual-
itative results: comparisons for all NMPs and real-world
sequences at multiple frame rates (16 fps, 8 fps, 4 fps), and
the teaser video from the main paper (see attached videos).

A. Real-World Experiment

To test whether physics-grounded post-training transfers
beyond controlled simulation, we evaluate our approach on
361 real-world free-fall videos provided in the PISA bench-
mark [36]. These videos capture everyday objects dropped
in diverse indoor and outdoor environments, providing nat-
ural variation in texture, lighting, background clutter, and
real gravitational motion (see Figure 8). This setting allows
us to assess whether a model trained purely on synthetic
physics signals can generalize to real camera imagery and
real-world dynamics.

Following the evaluation protocol used in our
NewtonBench-60K, we measure performance using five
metrics: three visual metrics (L2, Chamfer Distance, IoU)
and two physics metrics (RMSE,,, RMSE,). We evaluate
the OpenSora (SFT) baseline, all three PISA post-training
variants (Depth, Segmentation, Optical Flow), and our
NewtonRewards under exactly the same conditions.
This establishes a direct comparison of how well different
reward formulations cope with real free-fall trajectories.

As shown in Table 5, NewtonRewards yields the
largest and maintains consistent gains across both visual
and physics metrics, demonstrating strong transfer from
synthetic supervision to natural free-fall motion.

B. Reward Hacking Mitigation

In Section 6 of the main paper, we identified reward hacking
as a failure mode that arises when optimizing only the kine-
matic residual. Without the mass-conservation reward, the

Real-world ¢
Free fall

~Na ;

N a ;

AN a : N a :

Figure 8. Real-world free-fall evaluation. We test whether mod-
els post-trained purely in simulation can generalize to real camera
imagery and real gravitational motion. Shown here is a representa-
tive video from the PISA real-world dataset (361 free-fall videos).

Table 4. Residuals and velocity magnitude. Lower residuals
indicate smoother (closer-to-constant-acceleration) motion, while
the velocity magnitude reveals whether the motion remains phys-
ically meaningful. Without mass conservation, the model reduces
the residual primarily by collapsing motion magnitude.

Horizontal ~ Vertical Velocity
Method Residual Residual Magnitude
OpenSora (SFT) 0.000509 0.001142 0.101715
NewtonRewards 0.000194 0.000511 0.071377
NewtonRewards w/o mass 0.000986 0.000331 0.033854

generator can trivially reduce HcZ)t 120+ Py Hz by
driving all velocity fields ¢, toward zero—producing videos
in which the object barely moves or even disappears. Here,
we provide additional quantitative evidence of this finding.

As shown in Table 4, removing mass conservation
(NewtonRewards w/o mass) decreases the vertical resid-
ual compared to SFT, but does so by collapsing the aver-
age velocity magnitude from 0.1017 to 0.0339-a reduction
of more than 66%. This confirms that the residual-only
model optimizes the objective by freezing motion rather
than by producing more accurate Newtonian trajectories. In
contrast, the full NewtonRewards not only yields sub-
stantially lower residuals in both directions, but also main-
tains non-trivial velocity, indicating that it improves dy-
namical consistency without sacrificing meaningful motion.
These results quantitatively support our claim that the mass-
conservation reward is crucial for preventing reward hack-
ing and stabilizing physics-grounded post-training.

C. Extended Qualitative Results

In addition to Fig. 5, we provide visual comparison in
Figs. 9 to 12 between post-training strategies on our
NewtonBench-60K for the remaining NMPs.



Table 5. SFT and post-training strategies on real-world experiment. (green = improvement, red = regression). Visual metrics (L2, CD,
ToU) capture pixel alignment and shape agreement; physics metrics (RMSE,, RMSE,) capture physical plausibility in motion.

Visual metrics

Physics metrics

Method L2() CD () IoU (1) RMSEy (}) RMSE, () Avg. Change

OpenSora (SFT) 0.1716 0.4386 0.0198 2.4485 18.4169 -

PISA [36] ORO Optical Flow ~ 0.1699 (+0.99%) 0.4336 (+1.14%) 0.0182 (-8.08%)  2.4237 (+1.01%) 18.3333 (+0.45%) -0.90%

PISA [36] ORO Depth Map ~ 0.1704 (+0.70%) 0.4342 (+1.00%) 0.0218 (+10.10%) 2.4395 (-0.37%) 183474 (-0.38%) +2.21%

PISA [36] ORO Segmentation 0.1712 (+0.23%) 0.4372 (+0.32%) 0.0210 (+6.06%)  2.4273 (+0.87%) 18.2344 (+0.99%) +1.29%

NewtonRewards 0.1698 (+1.05%) 0.4333 (+1.21%) 0.0235 (+18.69%) 2.3889 (+2.43%) 18.1670 (+1.36%) +4.15%
SFT PISA Depth PISA Segmentation  PISA Optical Flow NewtonRewards

II’WM

THIRIG 325 077 ‘L,, .

i \ ¥ 'mSE‘Z:ITana

\\’ | 600 000y
)

(+]

ll'rlmﬁ Jaﬂ lﬂuTHLp o~

dﬁﬂTHﬁ,'%a

A\

u-m
TR
f Wlhnmnmm 0ore *h\

dﬁHTHﬁ.Ea

K2 33
‘ﬂ-nnlmms\nu ae ”‘

4N dnaTHnaa

\ (LT

u-m
ITHIGSG 308 01076 q,;.

\
\

dhaTHRsa 2 f

o,
FTNISG 308 0707 uw

(LT LI

dh3THRAA 4 /

o,
7» \\ { n-nmmm’,“ e ‘In

dﬁHTHﬁ.I‘iH

.
S S her TS

l
1]
7’ \\ -5 nmmaan nore mn

dﬁBTHﬂﬁa

umw
I THIN
7‘ \ ! m-mm-m"m nore m

dﬁ(‘]THﬁ.Z‘la

IIIIM
TN 30 0707 q\,

[ MO MODRORST)

dﬁ"]TH.ﬁ.HH

-

lm

\\

nm il
| l.nmmnmyﬂmm q\

dﬁ"lTHﬁBH

lmw

ITHINSG
(LU LI

)
308 1076 g~

dﬁ"]THﬁBH

e
T g 00TE b

l”,

(LU LI

dRaTHRA

T,
TG
Lt nmmuiﬁ ors o

dﬁHTHﬁ.BH

s @
| RO Dg oy g *U

dﬁﬂTHﬁBa

mm
im0 nmmmulﬁ AL ”\'

dﬁHTHﬁ.aa

TIM’:ﬁ
(LLUE LI

dﬁ':lTHﬂﬁa

lmw

THIGLG
i Hsm 01076 Wi,

dﬁHTHﬁB"

lmw

THIG e
e nnlmmeﬁﬂ Tore v \ {

dR3THRAA
'

m nore m\

dﬁﬁTHﬁﬁﬁ

man IJH nore Nﬂ\

\\

'I‘Illiiﬁ
[ Tinon, nmmnsen [ﬂ AT

dﬁ':]THﬁ.I'lﬁ

‘\
\.

“\

'nmn
J u-nmm.ﬁ” 0ore o

| 0 oDy

dﬁ':lTHjiI-la

m\

1 0ot q\, i m-nn;rmn o «n:

dﬁ':ITHIiaa

"m

dﬁaTHnaa
£\

I’lwu
U
e, m.".','i“ 308 01076 g

dﬁﬁTHﬁ'%

mm
[ no, nnmmayaﬂ it gy

dR3THEA:

m:
(Mo, lnnmmseyﬂﬂ et

dR3THEA:

lmw

Thi
m.nmmﬁ? BTy

dR3THEA:

T

Tmﬁ
R i ]JH 0707 i

dﬁHTHIiH

HTlmﬁ J.'IH 01076

[ WERON MR RS

dh3THA3]

Figure 9. Qualitative comparison of post-training strategies on the NewtonBench-60K free fall scenario. Clear differences appear
when examining the temporal evolution across frames (top—bottom). Under SFT and all PISA variants (Depth, Segmentation, Optical
Flow), the objects frequently display inconsistent vertical acceleration and unstable trajectories sequence frames where items jitter, deviate

laterally, or momentarily “hover”

. PISA Optical Flow particularly exhibits frame-to-frame jitter and irregular descent. In contrast, New-

tonRewards produces smooth, stable free-fall motion: objects drop along physically plausible vertical paths with consistent acceleration
and minimal horizontal drift, closely matching true gravitational dynamics.
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Figure 10. Qualitative comparison of post-training strategies on the Newt onBench-60K ramp slide up scenario. Across temporal
progression (top—bottom), SFT and all PISA variants (Depth, Segmentation, Optical Flow) exhibit inconsistent contact dynamics. In SFT,
PISA Depth, and PISA Segmentation, the objects are sliding oppositionally down; and in PISA Optical Flow the object just disappears. In
contrast, NewtonRewards produces coherent, physically grounded motion: the objects sliding up smoothly, with realistic frictional motion,
and no frame-to-frame jitter. The resulting trajectory aligns closely with expected dynamics under gravity and surface friction.



SFT PISA Depth PISA Segmentation  PISA Optical Flow NewtonRewards

Figure 11. Qualitative comparison of post-training strategies on the Newt onBench—-60K horizontal throw scenario. Examining the
temporal rollout (top—bottom), SFT and all PISA variants (Depth, Segmentation, Optical Flow) exhibit inconsistent motion: objects either
lose horizontal velocity too quickly, drift irregularly, or jitter frame-to-frame. Several PISA variants show abrupt slowdowns or curved,
non-ballistic paths. In contrast, NewtonRewards produces smooth, coherent trajectories that follow a realistic horizontal-throw profile:
constant horizontal velocity, stable parabolic descent, and no unnatural jitter. The motion aligns closely with classical projectile dynamics,
demonstrating significantly improved physical fidelity.
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Figure 12. Qualitative comparison of post-training strategies on the NewtonBench-60K parabolic throw scenario. Across the
temporal rollout (top—bottom), SFT and all PISA variants (Depth, Segmentation, Optical Flow) struggle to reproduce coherent parabolic
motion. The thrown object exhibits noticeable inconsistencies—trajectory, abrupt velocity changes, or overly flattened arcs. In particular,
objects disappear for the PISA Optical Flow case. In contrast, NewtonRewards generates smooth, physically realistic motion: the object
follows a stable parabolic path with consistent horizontal velocity and gravitationally governed vertical acceleration.
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